
1

Real-Time
Scheduling

Giorgio Buttazzo

Scuola Superiore Sant’Anna, Pisa

E-mail: buttazzo@sssup.it

2

Goal
Provide some background of RT theory that
you can apply for implementing RT control
applications (using Shark):

• Terminology and models

• Basic results on periodic scheduling

• Aperiodic task handling

• Inter-task communication

• Overload and QoS management

3

A computing system able to respond to
events within precise timing constraints.

Real-Time
System

event

action

Real-Time system

4

Real-Time system

REAL TIME means that system time must be
synchronized with the time in the environment.

EnvironmentRT system

y

x

t

(t)

(t+∆)
t

It is a system in which the correctness depends not only
on the output values, but also on the time at which
results are produced.

5

Typical applications
• automotive

• multimedia systems

• robotics

• small embedded devices
⇒ cell phones
⇒ digital TV
⇒ videogames
⇒ intelligent toys

6

Implications
• Timing constraints are imposed by the

dynamics of the environment.

• The tight interaction with the environment
requires the system to react to events within
precise timing constraints.

The operating system is responsible for
enforcing such constraints on task execution.

2

7

Environment

S1

S2

S3

A1

A2

A3

F1

F2

F3

Multi-level feedback control

Sensing Control

8

Software Vision

Environment

computer

actuators

sensorsA/D

D/A

Thread (task) Resource

9

Traditional Approach
• In spite of this large application domain, most

of RT applications are designed using
empirical techniques:
– assembly programming

– timing through dedicated timers

– control through driver programming

– priority manipulations

The resulting SW can be very efficient, but …
10

Disadvantages

1. Tedious programming which heavily
depends on programmer’s ability

2. Difficult code understanding

Readability ∝
1

efficiency

11

Disadvantages
3. Difficult software maintainability

• Complex appl.s consists of millions lines of code

• Code understanding takes more that re-writing

• But re-writing is VERY expensive and bug prone

4. Difficult to verify timing constraints without
explicit support from the OS and the
language

12

Implications

• Such a way of programming RT applications
is very dangerous.

• It may work in most situations, but the risk of
a failure is high.

• When the system fails is very difficult to
understand why.

low reliability

3

13

Typical misconception

It is not worth studying RT theory, because
any timing constraint can be handled by a
sufficiently fast computer.

Answers
•Given an arbitrary computer speed, we must always
guarantee that timing constraints can be met.
Testing is NOT sufficient.

•Increasing speed may not always work.

“RT system = Fast system”

14

Increasing speed may not always work

τ1

τ2

τ1

τ2

double speed deadline miss

15

Never use DELAY
A delay(∆) may cause a delay longer than ∆.

τ1

τ2
0 2 4 6 8 10 12 14

delay(2) blocked
τ1

τ2

0 2 4 6 8 10 12 14
16

A delay in a task may also increase the response
time of other tasks (example for fixed priorities):

τ1

τ2

0 5 10 15

0 4 8 12

delay(1)

τ1

τ2

deadline miss

0 5 10 15

0 4 8 12

…

Never use DELAY

17

A delay in a task may also increase the response
time of other tasks (example for deadline scheduling):

deadline miss

τ2
154 120 8

τ1
16

16

154 120 8

τ2

τ1
delay(8)

Never use DELAY

18

Speed vs. Predictability

• The objective of a real-time system is to
guarantee the timing behavior of each
individual task.

• The objective of a fast system is to minimize
the average response time of a task set.
But …

Don’t trust average when you have to
guarantee individual performance

4

19

Lessons learned
• Tests are not enough for real-time systems

• Intuitive solutions do not always work

• Delay should not be used in real-time tasks

A safe approach:
♦ use predictable kernel mechanisms
♦ analyze the system to predict its behavior

20

Achieving predictability
• The operating system is the part most

responsible for a predictable behavior.

• Concurrency control must be enforced by:
⇒ appropriate scheduling algorithms

⇒ appropriate syncronization protocols

⇒ efficient communication mechanisms

⇒ predictable interrupt handling

⇒ overload management

21

Let’s review the main
scheduling results

22

Terminology

• Task (or thread)
is a sequence of instructions that in the
absence of other activities is continuously
executed by the processor until completion.

task τi
release time

start time

finishing time

tri si fi

activation time
arrival time

Ci
computation time

23

Tasks and jobs

ri,k ri,k+1
t

τi
Ci

ri,1

A task is an infinite sequence of instances
(jobs):

Job 1
τi,1 τi,2 τi,3

Job 2 Job 3

24

Activation modes

• Time driven: periodic tasks
the task is automatically activated by the
kernel at regular intervals.

• Event driven: aperiodic tasks
the task is activated upon the arrival of an
event or through an explicit invocation of
the activation primitive.

5

25

Periodic task model
ri1 = Φi

ri,k+1 = ri,k + Ti

ri,k ri,k+1 t

Ti

Ci

ri,1 = Φi

τi (Ci , Ti , Di)

ri,k = Φi + (k−1) Ti

di,k = ri,k + Di

often
Di = Ti

26

Aperiodic task model

• Aperiodic: ri,k+1 > ri,k

• Sporadic: ri,k+1 ≥ ri,k + Ti

ri,k ri,k+1
t

τi
Ci

ri,1

Job 1 Job 2 Job 3

27

OS support for periodic tasks
task τi

wait_for_next_period();

while (condition) {

}

ready

running

idle

activeactive

idle idle

28

The IDLE state

Timer

end_cyclewake_up IDLE

dispatching

preemption

signal wait

RUNNINGREADY
terminateactivate

BLOCKED

29

SLEEP state

dispatching

preemption

signal wait

end_cycle

wake_up

RUNNING

IDLE

BLOCKED

READY

Timer

terminate
activate

create sleep
SLEEP

30

Scheduling
• A scheduling algorithm is said to be:

– preemptive: if the running task can be
temporarely suspended in the ready queue
to execute a more important task.

– non preemptive: if the running task cannot
be suspended until completion.

6

31

Schedule
A schedule is a particular assignment of tasks
to the processor.

Given a task set Γ = {τ1, …, τn}, a schedule is a
mapping σ : R+ → N such that ∀t ∈ R+, ∃t1, t2 :

t ∈ [t1, t2) e ∀t’ ∈ [t1, t2) : σ(t) = σ(t’)

σ(t) =
k > 0 if τk is running

0 if the processor is idle

32

A sample schedule

σ(t)
3

2

1

0
tt3 t4t2t1

τ1 τ2 τ3 idleidle

At time t1, t2, t3, e t4 a context switch is performed.

Each interval [ti, ti+1) is called a time slice.

33

A preemptive schedule

σ(t)

3

2

1

0 t

τ1

τ2

τ3

34

Definitions
• A schedule σ is said to be feasible if all

the tasks are able to complete within a
set of constraints.

• A set of tasks Γ is said to be
schedulable if there exists a feasible
schedule for it.

35

Types of constraints
• Timing constraints

– activation, completion, jitter.

• Precedence constraints
– they impose an ordering in the execution.

• Resource constraints
– they enforce a synchronization in the

access of mutually exclusive resources.

36

Precedence graph

acq1 acq2

edge1 edge2

shapedisp

depth

rec

7

37

Resource constraints
To preserve data consistency, shared resources
must be accessed in mutual exclusion:

x = 3
y = 5

τW τRx = 1
y = 8

τW

τR

x=1

x = 1
y = 5

y=8

read

38

Mutual exclusion
However, mutual exclusion introduces extra delays:

x = 3
y = 5x = 1

y = 8
x = 1
y = 8

τW τR

τW

τR

x = 1

∆

y = 8

read

39

Timing constraints
Can be explicit or implicit.

• Explicit constraints
– Are included in the specification of the

system activities.

Examples
– open the valve in 10 seconds
– send the position within 40 ms
– read the altimeter every 200 ms

40

Real-Time tasks

ri release time (arrival time ai)
si start time
Ci worst-case execution time (wcet)
di absolute deadline
Di relative deadline
fi finishing time

ri si fi di
t

τi
Ci

Di

41

Other parameters

ri si fi di
t

τi
ci(t)

Lateness: Li = fi − di

Tardiness: max(0, Li)

Residual wcet: ci(t) ci(ri) = Ci

Laxity (o slack): di − t − ci(t)

t

slack

42

Jitter

fi,1

τi

It is the time variation of a periodic event:

Finishing-time Jitter

fi,2 fi,3

Absolute: max (fi,k – ri,k) – min (fi,k – ri,k)
k k

Relative: max | (fi,k – ri,k) – (fi,k-1 – ri,k-1) |
k

8

43

Other types of Jitter

si,1

τi

Start-time Jitter

si,2 si,3

Completion-time Jitter (I/O jitter)

si,1

τi

si,2 si,3fi,2fi,1 fi,3

44

HARD tasks
All jobs must meet their deadlines. Missing a
deadline may cause catastrophical effects.

SOFT tasks
Missing deadlines is not desired but causes
only a performace degradation.

Task Criticality

An operating system able to handle hard
tasks is called a hard real-time system.

45

Typical HARD tasks
– sensory acquisition
– low-level control
– sensory-motor planning

Typical SOFT tasks
– reading data from the keyboard
– user command interpretation
– message displaying
– graphical activities

46

• Implicit constraints
– do not appear in the system specification,

but must be respected to meet the
requirements.

t0 ?

Example

What’s the time validity of a sensory data?

47

Example: automatic breaking

obstacle
v

Dashboard
Controls BRAKEShuman Distribution

Unit

condition
checker

sensors

emergency
stop

D
sensor visibility

48

Ts
acq.
task

obstacle in
the field

Ts

obstacle
detected

brake
pressed

∆

train
stopped

Tb

v

Worst-case reasoning

9

49

D = sensor visibility

v(Ts + ∆) + Xb < D

a = µ g

g
vX b µ

=
2

2

2

2
1 atvtX b −=

v = a t

D
g

vTv s <+∆+
µ2

)(
2

50

∆−−<
g

v
v
DTs µ2

speed

Tmax

vmaxv

Ts

ggDgv µ∆−µ+µ∆= 2)(2
max

gDv µ≅ 2max

51

Esempio2: contour following

v

F

Goal
Move at velocity v along the surface
tangent, exerting a force F < Fmax along
its normal direction.

52

Ts

acq.
task

Ts

force not
detected

trajectory
modified

robot
stopped

τdv

Worst-case reasoning
v

F(t-1) F(t) F(t+1)

v = v0 e–(t/τd)

53

Lenght covered by the robot after the contact:

L = vTs + xf

dd
t

f veevdtevdttvx d τττ
0

0
00

/
00

)()(=−−=== ∞−∞ −∞

∫∫
L = v(Ts + τd)

Force on the robot tool:

F = KL = v(Ts + τd) < Fmax

(K = elastic coefficient)

54

Condition on the sampling period:

ds Kv
FT τ−<

0

max

speed

Tmax

vmaxv0

Ts









−= dKv

FT τ
0

max
max

dK
Fv

τ
max

max =

10

55

The general
scheduling problem

Given a set Γ of n tasks, a set P of m processors, and
a set R of r resources, find an assignment of P and R
to Γ which produces a feasible schedule.

Scheduling
algorithm

Γ

R
P σ

feasible
56

Complexity

• In 1975, Garey and Johnson showed that
the general scheduling problem is NP hard.

• However, polynomial time algorithms can be
found under particular conditions.

57

Complexity

• Alg. 1: O(n)
• Alg. 2: O(n6)
• Alg. 3: O(6n)

It’s important to find polynomial time algorithms.

number of tasks n = 30
elementary step = 1µs

30 µs
12 min
7 billions of years

58

Simplifying assumptions

• Single processor

• Omogeneous task sets

• Fully preemptive tasks

• Simultanoeus activations

• No precedence constraints

• No resource constraints

Periodic Task
Scheduling

60

Problem formulation

For each periodic task, guarantee that:
• each job τik is activated at rik = (k−1)Ti

• each job τik completes within dik = rik + Di

τi (Ci, Ti) job τik

rik dik

11

61

Timeline Scheduling
(cyclic scheduling)

It has been used for 30 years in military
systems, navigation, and monitoring systems.

Examples
– Air traffic control

– Space Shuttle

– Boeing 777

62

Timeline Scheduling

• The time axis is divided in intervals of equal
length (time slots).

• Each task is statically allocated in a slot in
order to meet the desired request rate.

• The execution in each slot is activated by a
timer.

Method

63

Example

40 Hz

20 Hz

10 Hz

25 ms

50 ms

100 ms

f T
A

task

B

C

∆ = GCD (minor cycle)

T = lcm (major cycle)

T

0 25 50 75 100 125 150 175 200

∆

CA + CB ≤ ∆
CA + CC ≤ ∆

Guarantee:

64

Implementation

A
B

A
C

A
B

A

timer

timer

timer

timer

minor
cycle

major
cycle

65

Timeline scheduling

• Simple implementation (no real-time
operating system is required).

• Low run-time overhead.

• It allows jitter control.

Advantages

66

Timeline scheduling

• It is not robust during overloads.

• It is difficult to expand the schedule.

• It is not easy to handle aperiodic activities.

Disadvantages

12

67

Problems during overloads
What do we do during task overruns?

• Let the task continue
– we can have a domino effect on all the other

tasks (timeline break)

• Abort the task
– the system can remain in inconsistent states.

68

Expandibility
If one or more tasks need to be upgraded,
we may have to re-design the whole
schedule again.

Example: B is updated but CA + CB > ∆

0 25

∆

A B

69

Expandibility
• We have to split task B in two subtasks

(B1, B2) and re-build the schedule:

0 25 50 75 100

B1 B1B2 B2A A A AC
• • •

CA + CB1 ≤ ∆
CA + CB2 + CC ≤ ∆

Guarantee:

70

Expandibility
If the frequency of some task is changed,
the impact can be even more significant:

25 ms

50 ms

100 ms

25 ms

40 ms

100 ms

T T
A

task

B

C

before after

∆ = 25 ∆ = 5
T = 100 T = 200

minor cycle:
major cycle:

40 sync.
per cycle!

71

Example

T

0 25 50 75 100 125 150 175 200

∆

0 25 50 75 100 125 150 175 200

∆

T

72

Priority Scheduling

• Each task is assigned a priority based on its
timing constraints.

• We verify the feasibility of the schedule using
analytical techniques.

• Tasks are executed on a priority-based
kernel.

Method

13

73

Priority Assignments

• Rate Monotonic (RM):
pi ∝ 1/Ti (static)

• Earliest Deadline First (EDF):
pi ∝ 1/di (dynamic)

ri,k ri,k+1 t

Ti

Ci

ri,1 = 0

τi (Ci , Ti , Di)

di,k = ri,k + Di

Di = Ti

74

Rate Monotonic (RM)
• Each task is assigned a fixed priority

proportional to its rate.

0

500 10025 75
τA

τB

0
τC

40 80

100

75

How can we verify feasibility?
• Each task uses the processor for a fraction of

time:

i

i
i T

CU =

• Hence the total processor utilization is:

∑
=

=
n

i i

i
p T

CU
1

• Up is a misure of the processor load
76

A necessary condition

If Up > 1 the processor is overloaded hence
the task set cannot be schedulable.

However, there are cases in which Up < 1
but the task is not schedulable by RM.

77

An unfeasible RM schedule

0 9 18

6 120 183

3 6 12

9

15

15

deadline miss

τ1

τ2

944.0
9
4

6
3

=+=pU

78

Utilization upper bound

833.0
9
3

6
3

=+=pU

0 9 18

6 120 183

3 6 12

9

15

15
τ1

τ2

NOTE: If C1 or C2 is increased,
τ2 will miss its deadline!

14

79

A different upper bound

1
8
4

4
2

=+=pU

The upper bound Uub depends on the
specific task set.

0

4 120 8 16
τ1

τ2
4 128 16

80

The least upper bound

1

Γ

Uub

Ulub

. . .

81

A sufficient condition

If Up ≤ Ulub the task set is certainly
schedulable with the RM algorithm.

If Ulub < Up ≤ 1 we cannot say anything
about the feasibility of that task set.

NOTE

82

Basic results

()121

1
−≤∑

=

n
n

i i

i n
T
Cunder RM

In 1973, Liu & Layland proved that a set of n
periodic tasks can be feasibly scheduled

if

if and only ifunder EDF 1
1

≤∑
=

n

i i

i

T
C

Assumptions:
Independent tasks

Di = TiΦi = 0

83

RM bound for large n

()12 /1
lub −= nRM nU

for n → ∞ Ulub → ln 2

84

Schedulability bound

0
10
20
30
40
50
60
70
80
90

100

1 2 3 4 5 6 7 8 9 10

69%

n

CPU%
RM EDF

15

85

A special case

1
8
4

4
2

=+=pU

If tasks have harmonic periods Ulub = 1.

0

4 120 8 16
τ1

τ2
4 128 16

86

Schedulability region

1
U1

U2
10.83

0.83

)12(/1

1

−≤∑
=

n
n

i
i nU

1
1

≤∑
=

n

i
iU

The U-space

RM

EDF

87

Schedule

0 9 18

6 120 183

3 6 12

9

15

15
τ1

τ2

EDF

RM

0 9 18

6 120 183

3 6 12

9

15

15

deadline miss

τ1

τ2

88

RM Optimality
RM is optimal among all fixed priority
algorithms:

If there exists a fixed priority assignment
which leads to a feasible schedule for Γ,
then the RM assignment is feasible for Γ.

If Γ is not schedulable by RM, then it
cannot be scheduled by any fixed priority
assignment.

89

EDF Optimality

EDF is optimal among all algorithms:

If there exists a feasible schedule for Γ,
then EDF will generate a feasible schedule.

If Γ is not schedulable by EDF, then it
cannot be scheduled by any algorithm.

90

Critical Instant
For any task τi, the longest response time occurs when it
arrives together with all higher priority tasks.

τ1

τ2

R2

τ1

τ2

R2

16

91

The Hyperbolic Bound

• In 2000, Bini et al. proved that a set of n
periodic tasks is schedulable with RM if:

2)1(
1

≤+∏
=

n

i
iU

92

Schedulability region

1
U1

U2
10.83

0.83

)12(/1

1

−≤∑
=

n
n

i
i nU

1
1

≤∑
=

n

i
iU

The U-space

2)1(
1

≤+∏
=

n

i
iU

RM

EDF

93

Extension to tasks with D < T

ri,k di,k

Ci

t
τi

Di

Ti

ri,k+1

• Deadline Monotonic: pi ∝ 1/Di (static)

• Earliest Deadline First: pi ∝ 1/di (dynamic)

Scheduling algorithms

94

Deadline Monotonic

τ2

τ1

0 4 8 12 16 20 24 28

Problem with the Utilization Bound

116.1
6
3

3
2

1
>=+== ∑

=

n

i i

i
p D

CU

but the task set is schedulable.

95

How to guarantee feasibility?

ri,k di,k

Ci

t
τi

Di

Ti

ri,k+1

• Fixed priority: Response Time Analysis (RTA)

• EDF: Processor Demand Criterion (PDC)

96

Response Time Analysis
[Audsley ‘90]

• For each task τi compute the interference
due to higher priority tasks:

• compute its response time as
Ri = Ci + Ii

• verify if Ri ≤ Di

∑
<

=
ik DD

ki CI

17

97

Computing the interference

0 Ri

τi

τk

Interference of τk on τi
in the interval [0, Ri]: k

k

i
ik C

T
RI =

Interference of high
priority tasks on τi: k

k

i
i

k
i C

T
RI ∑

−

=

=
1

1
98

Computing the response time

k
k

i
i

k
ii C

T
RCR ∑

−

=

+=
1

1

Iterative solution:

k
k

s
i

i

k
i

s
i C

T
RCR

)1(1

1

−−

=
∑+=

ii CR =0

iterate until
)1(−> s

i
s
i RR

99

Processor Demand Criterion
[Baruah, Howell, Rosier 1990]

In any interval of time, the computation
demanded by the task set must be no greater
than the available time.

)(),(,0, 122121 ttttgtt −≤>∀

100

Processor Demand

t1 t2

∑
≤

≥

=
2

1

),(21

td

tr
i

i

i

Cttg

The demand in [t1, t2] is the computation time of
those jobs started at or after t1 with deadline less
than or equal to t2:

101

Processor Demand
For synchronous task sets we can only analyze intervals [0,L]

L
Di Ti + Di 2Ti + Di 3Ti + Di

0 L

τi

g(0, L) ∑
=

+−
=

n

i
i

i

ii C
T

TDL
1

g(0, L)

102

Processor Demand Test

How can we bound the number of intervals in
which the test has to be performed?

Question

LC
T

TDLL
n

i
i

i

ii ≤
+−

>∀ ∑
=1

0

18

103

Example

τ2

τ1

0 2 6 124 8 10 14 16

0

2

4

6

8

g(0, L)

L

L

104

Bounding complexity
• Since g(0,L) is a step function, we can check

feasibility only at deadline points.

• If tasks are synchronous and Up < 1, we can
check feasiblity up to the hyperperiod H:

H = lcm(T1, … , Tn)

105

Bounding complexity
• Moreover we note that: g(0, L) ≤ G(0, L)

∑
=








 −+
=

n

i
i

i

ii C
T

DTLLG
1

),0(

i

i
n

i
ii

n

i i

i

T
CDT

T
CL ∑∑

==

−+=
11

)(

∑
=

−+=
n

i
iii UDTLU

1
)(

106

Limiting L

g(0, L)

L

G(0, L)
∑

=

−+=
n

i
iii UDTLULG

1
)(),0(L

L*

for L > L*

g(0,L) ≤ G(0,L) < L

U

UDT
L

n

i
iii

−

−
=

∑
=

1

)(
1*

107

Processor Demand Test

D = {dk | dk ≤ min (H, L*)}

H = lcm(T1, … , Tn)

U

UDT
L

n

i
iii

−

−
=

∑
=

1

)(
1*

LC
T

TDLL
n

i
i

i

ii ≤
+−

>∀ ∑
=1

0U < 1 AND

A set of n periodic tasks with D ≤ T is schedulable by
EDF if and only if

108

Summarizing: RM vs. EDF

RM

EDF

Di = Ti Di ≤ Ti

ΣUi ≤ 1

LL: ΣUi ≤ n(21/n –1)

HB: Π(Ui+1) ≤ 2

LLgL ≤>∀),0(,0

O(n)

∀i Ri ≤ Di

pseudo-polynomial

k
k

i
i

k
ii C

T
RCR ∑

−

=

+=
1

1

pseudo-polynomialpolynomial:

Suff.: polynomial O(n)

RTA
Exact pseudo-polynomial

Response Time Analysis

Processor Demand Analysis

19

109

Questions

• If EDF is more efficient than RM, why
commercial RT systems are still based on RM?

• RM is simpler to implement on top of
commercial (fixed priority) kernels.

• EDF requires explicit kernel support for deadline
scheduling, but gives other advantages.

Main reason

110

Advantages of EDF
However, EDF offers the following advantages
with respect to RM:

• Less overhaed due to preemptions;

• More flexible behavior in overload situations;

• More uniform jitter control;

• Better aperiodic responsiveness.

111

Runtime overhead
Two different types of overhead are considered:

1. Overhead for job release

⇒ EDF has more than RM, because the absolute
deadline must be updated at each job activation

2. Overhead for context switch

⇒ RM has more than EDF because of the higher
number of preemptions

112

Preemptions

τ1

τ2
0

100 205 15 25

217 14

30

28 35

35

RM

τ1

τ2
0

100 205 15 25

217 14

30

28 35

35

EDF
deadline miss

97.0
7
4

5
2

≅+=U

113

Preemptions

4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

70

80

Number of tasks

Avg. no. of preemptions
(1000 sims of 1000 units)

RM

EDF

ρ = 0.9
T ∈ [10, 100]

114

Preemptions

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
0

10

20

30

40

50

60

70

80

Load

Avg. no. of preemptions
(1000 sims of 1000 units)

RM

EDF

N = 10
T ∈ [10, 100]

20

115

Example with RM

0 2 4 6 8 10 12 14 16 18 20

10 20

6 12 18

τ1

τ2

τ3

Under RM, preemptions increase
as computation times increase

116

Example with RM

0 2 4 6 8 10 12 14 16 18 20

10 20

6 12 18

τ1

τ2

τ3

Under RM, preemptions increase
as computation times increase

117

Example with EDF

0 2 4 6 8 10 12 14 16 18 20

10 20

6 12 18

τ1

τ2

τ3

Under EDF, preemptions may decrease
as computation times increase

118

Example with EDF

0 2 4 6 8 10 12 14 16 18 20

10 20

6 12 18

τ1

τ2

τ3

Under EDF, preemptions may decrease
as computation times increase

119

Robustness under overloads
Two situations are considered:

1. Permanent overload

⇒ This occurs when U > 1

2. Transient overload

⇒ This occurs when some job executes
more than expected

120

RM under permanent overload

8 16 72

τ1

τ2

τ3

0 24 32 40 48 56 64 80

40 8020 60

0

0

12 24 36 48 60 72 84

• High priority tasks execute at the proper rate
• Low priority tasks are completely blocked

25.1
20
5

12
6

8
4

=++=U

21

121

EDF under permanent overload

8 16 72

τ1

τ2

τ3

0 24 32 40 48 56 64 80

40 8020 60

0

0

12 24 36 48 60 72 84

• All tasks execute at a slower rate

• No task is blocked

25.1
20
5

12
6

8
4

=++=U

122

EDF is predictable in overloads

Theorem (Cervin ‘03)

If U > 1, EDF executes tasks with an
average period T’i = Ti U.

τ1

τ2

τ3

8 10

12 15

20 25

T’iTi

τ1

τ2

τ3

8

12

20

10

15

25

U = 1.25

123

Big misconceptions

RM is predictable during overloads because
the tasks that miss their deadlines are low

priority tasks.

We now show that this is not true

EDF is not predictable during overloads
because we don’t know which tasks are

going to miss their deadlines.

124

RM during transient overruns

0

2 4 6 8 10 12 14 16 18 20

5 1510 20 25

9 18

2422

300

0 27

20

300 26 28

deadline
miss

τ1

τ2

τ3

τ4

(2/5)

(3/9)

(1/20)

(1/30)

Uavg = 0.817 C1avg = 2, C1max = 4

Who is missing its deadline is not the lowest priority task

125

Another misconception

RM reduces jitter during task execution
more than EDF

126

Jitter under RM

0

6 1812 24

8 18

0

0

τ1

τ2

τ3

(2/6)

(3/8)

(2/12)
12 24

RTJ1 = 0

RTJ2 = 2

RTJ3 = 8

τ3 experiences a very high jitter

22

127

Jitter under EDF

0

6 1812 24

8 18

0

0

τ1

τ2

τ3

(2/6)

(3/8)

(2/12)
12 24

RTJ1 = 1

RTJ2 = 2

RTJ3 = 3

For a little increase of RTJ1,
RTJ3 decreases a lot

128

Jitter experiments

1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

Task number

RM

EDF

10

Normalized Avg. RTJ N = 10U = 0.8

129

Jitter experiments

1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

Task number

Normalized Avg. RTJ

RM

EDF

N = 10U = 0.9

10

0.7

0.8

0.9

1.0

130

Another result on Jitter
Input-Output Jitter

si,1

τi

si,2 si,3fi,2fi,1 fi,3

IOJi = max (fi,k – si,k) – min (fi,k – si,k)

Theorem (Cervin 03)

IOJi
EDF ≤ IOJi

RM

131

I/O Jitter under RM

0

6 1812 24

8 18

0

0

τ1

τ2

τ3

(2/6)

(3/8)

(2/12)
12 24

IOJ1 = 0

IOJ2 = 2

IOJ3 = 5

All tasks except τ1 experience I/O jitter

132

I/O Jitter under EDF

0

6 1812 24

8 18

0

0

τ1

τ2

τ3

(2/6)

(3/8)

(2/12)
12 24

RTJ1 = 0

RTJ2 = 0

RTJ3 = 0

All tasks experience no I/O Jitter

23

Handling Aperiodic Tasks

134

Handling Criticality
• Aperiodic tasks with HARD deadlines must be

guaranteed under worst-case conditions.

• Off-line guarantee is only possible if we can
bound interarrival times (sporadic tasks).

• Hence sporadic tasks can be guaranteed as
periodic tasks with Ci = WCETi and Ti = MITi

WCET = Worst-Case Execution Time
MIT = Minimum Interarrival Time

135

SOFT aperiodic tasks
• Aperiodic tasks with SOFT deadlines should

be executed as soon as possible, but
without jeopardizing HARD tasks.

• We may be interested in

→ minimizing the average response time

→ performing an on-line guarantee

136

Periodic Scheduling
(EDF)

τ1

τ2

ape
3

4

0

8

126

0 4 8 1262 10

C1 = 1

C2 = 3

137

Immediate service

τ1

τ2

ape
3

4

0

8

126

0 4 8 1262 10

C1 = 1

C2 = 3

deadline miss

Response Time = 3

138

Background service

τ1

τ2

ape
3

4

0

8

126

0 4 8 1262 10

C1 = 1

C2 = 3

Response Time = 10

24

139

Aperiodic Servers
• A server is a kernel activity aimed at controlling

the execution of aperiodic tasks.
• Normally, a server is a periodic task having two

parameters:

Cs capacity (or budget)
Ts server period

To preserve periodic tasks, no more than Cs
units must be executed every period Ts

140

Aperiodic service queue

Service queue
Server

READY queue

periodic/sporadic
HARD tasks

aperiodic
SOFT tasks

CPU

• The server is scheduled as any periodic task.
• Priority ties are broken in favor of the server.
• Aperiodic tasks can be selected using an arbitrary

queueing discipline.

141

Fixed-priority Servers

• Polling Server

• Deferrable Server

• Sporadic Server

• Slack Stealer

142

Dynamic-priority Servers

• Dynamic Polling Server

• Dynamic Sporadic Server

• Total Bandwidth Server

• Tunable Bandwidth Server

• Constant Bandwidth Server

143

Polling Server (PS)
• At the beginning of each period, the budget is

recharged at its maximum value.

• Budget is consumed during job execution.

• When the server becomes active and there are
no pending jobs, Cs is discharged to zero.

• When the server becomes active and there are
pending jobs, they are served until Cs > 0.

144

RM + Polling Server
τ1

τ2

ape
2

4

0

8

126

0 4 8 1262 10

C1 = 2

C2 = 1

0 5 10

PS
Cs = 1
Ts = 5

Response Time = 8

25

145

PS properties
• In the worst-case, the PS behaves as a periodic

task with utilization Us = Cs/Ts .

• Aperiodic tasks execute at the highest priority if
Ts = min(T1, … , Tn).

• Liu & Layland analysis gives that:














−








+

+=+ 1
1

2)(
1

lub

n

s
s

PSRM

U
nUnU

146

RM + PS schedulability

Us

0 1

1

ln2









+

+=∞→+

1
2ln)(lub

s
s

PSRM

U
UnU

)1()(/1
lub −+=+ n

s
PSRM KnUnU

1
2
+

=
sU

K

147

Deferrable Server (DS)
• Is similar to the PS, but the budget is not

discharged if there are no pending requests.

• Keeping the budget improves responsiveness,
but decreases the utilization bound.

ape

0 4 8 1262 10

0 4 8

DS
Cs = 1
Ts = 4

148

RM + Deferrable Server
τ1

τ2

ape
2

4

0

8

126

0 4 8 1262 10

C1 = 2

C2 = 1

0 5 10

DS
Cs = 1
Ts = 5

Response Time = 4

1

149

Analysis of RM + DS














−








+

+
+=+ 1

12
2)(

1

lub

n

s

s
s

DSRM

U
UnUnU

DS

τ1

Cs Cs

C1
Ts +Cs 2Ts+Cs

τ2
C2

T1

Cs

T2

150

RM + DS schedulability

Us

0 1

1

ln2

)(lub ∞→+ nU DSRM

PS

DS

)1()(/1
lub −+=+ n

s
PSRM KnUnU

1
2
+

=
s

PS U
K

12
2

+
+

=
s

s
DS U

UK

26

151

Designing server parameters














−








+

+
≤ 1

12
2

1
n

s

s
p U

UnU• Determine Us
max from

• Define Us ≤ Us
max

• Define Ts = min (T1, …, Tn)

• Compute Cs = UsTs

152

Total Bandwidth Server (TBS)
• It is a dynamic priority server, used along with

EDF.

• Each aperiodic request is assigned a deadline
so that the server demand does not exceed a
given bandwidth Us .

• Aperiodic jobs are inserted in the ready queue
and scheduled together with the HARD tasks.

153

The TBS mechanism

READY queue

periodic/sporadic
tasks

aperiodic
tasks

CPU

Deadline
assignment

Up + Us ≤ 1

• Deadlines ties are broken in favor of the server.
• Periodic tasks are guaranteed if and only if

154

Deadline assignment rule
• Deadline has to be assigned not to jeopardize

periodic tasks.

• A safe relative deadline is equal to the
minimum period that can be assigned to a new
periodic task with utilization Us:

Us = Ck / Tk Tk = dk − rk = Ck / Us

• Hence, the absolute deadline can be set as:

dk = rk + Ck / Us

155

Deadline assignment rule

dk = max (rk , dk-1) + Ck / Us

• To keep track of the bandwidth assigned to
previous jobs, dk must be computed as:

C1 C2

d1 d2r2r1

C1/Us C2/Us

156

EDF + TBS schedule

Us = 1 − Up = 1/4

τ1

τ2

ape
2

4

0

8

126

0 4 8 1262 10

C1 = 1

C2 = 3

1

d1 d2r1 r2

d1 = r1 + C1 / Us = 1 + 2·4 = 9

d2 = max(r2 , d1) + C2 / Us = 9 + 1·4 = 13

27

157

Improving TBS
• What’s the minimum deadline that can be

assigned to an aperiodic job?

τ1

τ2

ape
2

4

0

8

126

0 4 8 1262 10

C1 = 1

C2 = 3

d1r1

158

Improving TBS
• If we freeze the schedule and advance d1 to 7,

no task misses its deadline, but the schedule is
not EDF:

τ1

τ2

ape
2

4

0

8

126

0 4 8 1262 10

C1 = 1

C2 = 3

d1r1

Feasible schedule ≠ EDF

159

Improving TBS
• Clearly, advancing the deadline now does not

produce any enhancement:

τ1

τ2

ape
2

4

0

8

126

0 4 8 1262 10

C1 = 1

C2 = 3

d1r1

160

Computing the deadline
• In general, the new deadline has to be set to

the finishing time of the current job:

ape

),max(0
1

0
−= kkk drd

)(1 s
kk

s
k

s
k dffd ==+

dk
sfk

s

161

Computing the deadline
• The actual finishing time can be estimated

based on the periodic interference:

ape

),(s
kkpk

s
k drICf +=

dk
sfk

s
Ip

Ck

162

Periodic Interference

),(),(),(s
kf

s
ka

s
kp dtIdtIdtI +=

Us = 1 − Up = 1/6

Up = 1/2 + 1/3 = 5/6 Ck = 2
dk = 3 + 2/ Us = 15

τ1

τ2

ape
2

4

0

8

6

dk

12 16 20

12 18

0

3

28

163

Computing interference

∑=
active

i
s
ka

i

tcdtI
τ

)(),(

∑
=









−

−
=

n

i
i

i

i
s
ks

kf C
T

tnextddtI
1

1)(),(

nexti(t) = next release time
of task τi after t

dk

τ1

τ2

ape
2

4

0

8

6

12 16 20

12 18

0

3

164

The Optimal Server

),(s
kkpk

s
k drICf +=

ape

dk
sfk

s
Ip

Ck

),max(0
1

0
−= kkk drd

s
k

s
k fd =+1

s
k

s
k dd =+1

s = 0

s = s+1 EXIT

compute the initial
deadline with TBS

advance deadline

165

Tunable Bandwidth Server TB(K)

),(s
kkpk

s
k drICf +=

),max(0
1

0
−= kkk drd

s
k

s
k fd =+1

s
k

s
k dd =+1

s = 0

s = s+1 EXIT

O(1)

O(n)

() OR (s = K)

O(Kn)
polynomial

K = max number of steps

TB(∞) = TB*TB(0) = TBS 166

Tuning performance vs.
overhead

performance

overhead

optimal server

TBS

K = 0

TB*K = ∞

167

Aperiodic responsiveness

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

1

2

3

4

5

6

7

8

Relative Aperiodic Load: ρa/(1-Up)

Avg. Response Time
TB(0)

Up = 0.85

9

10

TB(1)

TB(3)

TB(5)
TB*

168

Problems with the TBS
• Without a budget management, there is no

protection against execution overruns.

• If a job executes more than expected, hard
tasks could miss their deadlines.

τ1

Us = 1/4
1

4 8

0 4 8 1262 10

C1 = 1

overrun

deadline miss

29

169

Solution: task isolation
• In the presence of overruns, only the faulty task

should be delayed.

• Each task τi should not demand more than its
declared utilization (Ui = Ci/Ti).

• If a task executes more than expected, its
priority should be decreased (i.e., its deadline
postponed).

170

Bandwidth partitioning
• Ideally, each task should be assigned a given

bandwidth and never demand more.

10 %

45 %
25 %

20 %

τ1

τ2τ3

τ4

171

Questions

• What do we do if a task overruns?
– Only that task should be delayed.

• Consequences
– if the task is hard => exception
– if the task is soft => QoS degradation

172

Achieving isolation
• Isolation among tasks can be achieved through

a bandwidth reservation.

• Each task is managed by a dedicated server
having bandwidth Us .

• The server assigns priorities (or deadlines) to
tasks so that they do not exceed the reserved
bandwidth.

173

Implementation

CPU

server
Ready queue

EDF

τ1

τ2

τ3

Us1

Us2

Us3

Us1 + Us2 + Us3 ≤ 1

server

server

174

Constant Bandwidth Server
(CBS)

• It assigns deadlines to tasks as the TBS, but
keeps track of job executions through a budget
mechanism.

• When the budget is exhausted it is immediately
replenished, but the deadline is postponed to
keep the demand constant.

30

175

CBS parameters
Given by the user

• Maximum budget: Qs

• Server period: Ts

Us = Qs / Ts (server bandwidth)

Maintained by the server
• Current budget: cs (initialized to 0)

• Server deadline: ds (initialized to 0)

176

Basic CBS rules
• Arrival of job Jk ⇒ assign ds

if (rk + cs /Us ≤ ds) then recycle (cs, ds)

else ds = rk + Ts

cs = Qs

ds = ds + Ts

cs = Qs

• Budget exhausted ⇒ postpone ds

177

Deadline assignment

0 5 12

0 5 12

3 2

6
3

1

cs

Qs = 6
Ts = 12

178

Budget exhausted

0 12

0 12

5

3
cs

Qs = 3
Ts = 6

1

63

3

179

EDF + CBS schedule

CBS: Qs = 2, Ts = 6

τ1

τ2

ape

6

0

12 18 24

9 2718

0

8 2714

d0
3

d1

r1

3

r2

d2
1

d3 d4

0 2 4 6 8 10

cs

12 14 16 18 20 22 24 26

r3 2418

180

CBS properties
• Bandwidth Isolation

If a task τi is served by a CBS with
bandwidth Us then, in any interval ∆t, τi will
never demand more than Us ∆t.

• Hard schedulability
A hard task τi (Ci, Ti) is schedulable by a
CBS with Qs = Ci and Ts = Ti, iff τi is
schedulable by EDF.

31

181

Selecting the most suitable
service mechanism

It depends on the price (overhead) we want
to pay to reduce task response times

performance

overhead

optimal server (TB*)

TBS
Slack Stealer

DS

PS

Background

TB(k)

CBS

SS

Inter-task communication
mechanisms

• Shared memory

• Message passing ports

• Asynchonous buffers

Handling shared
resources

Problems caused by
mutual exclusion

184

Critical sections
τ2τ1

globlal
memory buffer

write readx = 3;
y = 5;

a = x+1;
b = y+2;
c = x+y;

int x;
int y;

wait(s)

signal(s)

wait(s)

signal(s)

185

Blocking on a semaphore

CS

τ1 τ2

CS

p1 > p2

τ1

τ2

∆

It seems that the maximum blocking
time for τ1 is equal to the length of the
critical section of τ2, but …

186

Conflict on a critical section

BCT

priority

SCT

MT

B

32

187

Priority Inversion

A high priority task is blocked by a lower-
priority task a for an unbounded interval of
time.

Solution
Introduce a concurrency control protocol for
accessing critical sections.

188

Resource Access Protocols

Under fixed priorities
• Non Preemptive Protocol (NPP)
• Highest Locker Priority (HLP)
• Priority Inheritance Protocol (PIP)
• Priority Ceiling Protocol (PCP)

Under EDF
• Stack Resource Policy (SRP)

189

Non Preemptive Protocol
• Preemption is forbidden in critical sections.

• Implementation: when a task enters a CS, its
priority is increased at the maximum value.

PROBLEMS: high priority tasks that do
not use CS may also block

ADVANTAGES: simplicity

190

Conflict on critical section

τ1

priority B

τ2

τ3

191

Schedule with NPP

priority

τ1

τ2

τ3

PCS = max{P1, … Pn}
192

Problem with NPP

priority

τ1

τ2

τ3

τ1 cannot preemt, although it could

useless
blocking

33

193

Highest Locker Priority

A task in a CS gets the highest priority
among the tasks that use it.

FEATURES:

• Simple implementation.

• A task is blocked when attempting to preempt,
not when entering the CS.

194

Schedule with HLP
priority

τ1

τ2

τ3

τ2 is blocked, but τ1 can preempt within a CS

PCS = max {Pk | τk uses CS}

195

Problem with HLP

CS

test

τ1

CS

τ2

τ1

τ2

p1
p2

τ1 blocks just in case ...

196

Priority Inheritance Protocol
[Sha, Rajkumar, Lehoczky, 90]

• A task in a CS increases its priority only if it
blocks other tasks.

• A task in a CS inherits the highest priority
among those tasks it blocks.

PCS = max {Pk | τk blocked on CS}

197

Schedule with PIP
priority

τ1

τ2

τ3

p1

p3

direct blocking

push-through blocking

198

Types of blocking
• Direct blocking

A task blocks on a locked semaphore

• Push-through blocking
A task blocks because a lower priority
task inherited a higher priority.

BLOCKING:
a delay caused by a lower priority task

34

199

Identifying blocking resources
• A task τi can be blocked by those

semaphores used by lower priority tasks and
• directly shared with τi (direct blocking) or

• shared with tasks having priority higher than τi
(push-through blocking).

Theorem: τi can be blocked at most once
by each of such semaphores

Theorem: τi can be blocked at most once
by each lower priority task

200

Bounding blocking times
• If n is the number of tasks with priority less

than τi

• and m is the number of semaphores on
which τi can be blocked, then

Theorem: τi can be blocked at most for
the duration of min(n,m) critical
sections

201

Example
priority

B Cτ1

τ2

τ3

A

C

DB

A

D

• τ1 can be blocked once by τ2 (on A2 or C2) and
once by τ3 (on B3 or D3)

• τ2 can be blocked once by τ3 (on B3 or D3)

• τ3 cannot be blocked
202

Schedule with PIP
priority

τ1

τ2

τ3

τ4

P2

P1

203

Remarks on PIP

ADVANTAGES
• It is transparent to the programmer.

• It bounds priority inversion.

PROBLEMS
• It does not avoid deadlocks and

chained blocking.

204

Chained blocking with PIP

Theorem: τi can be blocked at most once
by each lower priority task

priority B1

τ1

τ2

τ3

B2 B3

τ4

35

205

Priority Ceiling Protocol

• Can be viewed as PIP + access test.

• A task can enter a CS only if it is free and there
is no risk of chained blocking.

To prevent chained blocking, a task may stop at
the entrance of a free CS (ceiling blocking).

206

Resource Ceilings

C(sk) = max {Pj : τj uses sk}

• Each semaphore sk is assigned a ceiling:

Pi > max {C(sk) : sk locked by tasks ≠ τi}

• A task τi can enter a CS only if

207

Schedule with PCP
s1 C(s1) = P1

s2 C(s2) = P1priority

τ1

τ2

τ3
t1

t1: τ2 is blocked by the PCP, since P2 < C(s1)
208

Remarks on PCP

ADVANTAGES
• Blocking is reduced to only one CS

• It prevents deadlocks

PROBLEMS
• It is not transparent to the programmer:

semaphores need ceilings

209

Typical Deadlock
τ1 τ2

τ1

τ2

blocked

blocked

P1 > P2

A

B

B

A

210

Deadlock avoidance with PCP
τ1 τ2

τ1

τ2

P1 > P2

A

B

B

A

CA = P1

CB = P1

ceiling blocking

36

211

Guarantee with resource
constraints

• We select a scheduling algorithm and a
resource access protocol.

• We compute the maximum blocking times
(Bi) for each task.

• We perform the guarantee test including the
blocking terms.

212

Guarantee with RM (D = T)

preemption
by HP tasks

τi

blocking by
LP tasks

()121
1

1
−≤

+
+∀ ∑

−

=

/i

i

ii
i

k k

k i
T

BC
T
Ci

By LL test:

213

Guarantee with RM (D ≤ T)

preemption
by HP tasks

τi

blocking by
LP tasks

k
k

i
i

k
iii C

T
RBCR ∑

−

=

++=
1

1

∀i Ri ≤ DiBy RTA test:

214

Stack Resource Policy [Baker 1990]

• It works both with fixed and dynamic
priority

• It limits blocking to 1 critical section

• It prevents deadlock

• It supports multi-unit resources

• It allows stack sharing

• It is easy to implement

215

Stack Resource Policy [Baker 90]

• For each resource Rk:
⇒ Maximum units: Nk

⇒ Available units: nk

Nk

nk

Rk

• For each task τi the system keeps:

⇒ its resource requirements:

⇒ a priority pi:

⇒ a static preemption level:

ii Tp 1∝ ii dp 1∝

ii D1∝π

RM EDF

µi(Rk)

216

Resource ceiling

System ceiling { })(max kkks nC=Π

Stack Resource Policy [Baker 90]

)(:max)(kjkjjkk RnnC µπ <=

SRP Rule

A job cannot preempt until
pi is the highest and πi > Πs

37

217

Example

τ3

τ2

τ1

Πs

t0
1
2
3

πi

3

2

1

218

SRP: Notes
• Blocking always occurs at preemption

time

• A task never blocks on a wait primitive
(semaphore queues are not needed)

• Semaphores are still needed to update
the system ceiling

• Early blocking allows stack sharing

219

SRP: Stack sharing

τ1

τ2

Classical blocking stack

t1 t2

stack

t1

τ1

τ2

Early blocking

t2

220

SRP: Stack sharing
• If tasks can be grouped in M subsets with the

same preemption level, then tasks within a
group cannot preempt each other.

• Then the stack size is the sum of the stack
memory needed by M tasks.

• If we have 100 tasks with 10 preemption levels,
and each task requires 10 Kb of stack, then

Stack size =
1 Mb

100 Kb

without SRP

under SRP (90% less)

221

1
1

1
≤

+
+∀ ∑

−

= i

ii
i

k k

k

T
BC

T
Ci

EDF Guarantee (Di = Ti)
preemption
by HP tasks

τi

blocking by
LP tasks

222

EDF Guarantee: PD test (Di ≤ Ti)

τ1

τi

...

τk

τn

Tasks are ordered by decreasing preemption level

38

223

EDF Guarantee: PD test (Di ≤ Ti)

∑
=

+−
+=

i

k
k

k

kk
ii C

T
TDLBLg

1
),0(

),max(: *
ini LDLDLi ≤≤∀∀

LLgi ≤),0(

∑

∑

=

=

−

−+
= i

k
k

i

k
kkki

i

U

UDTB
L

1

1*

1

)(

1<U AND

224

Message passing paradigm
Every task operates on a private memory
space, exchanging messages through
channels:

Channel: logical link by which two tasks
can communicate.

Message: set of data having a predefined
format.

225

Communication Ports

• The operating system provides the channel
abstraction through the port construct.

• A task can use a port to exchange messages
by means of two primitives:

send sends a message to a port
receive receives a message from a port

226

Port types
STREAM

readerwriter

MAILBOX
clients server

(owner)
STICK

producer
(owner) consumers

227

Using a port
Task A

p = port_create();

send(p, mes);

port_delete(p);

Task B

p = port_connect();

receive(p, mes);

port_disconnect(p);

NOTE: Task A is the owner and must start first.

228

Port primitives
• port_create(name, size, num, type, access);

name: identification string
size: message size (in bytes)
num: maximum number of messages
type: STREAM, MAILBOX, STICK
access: READ, WRITE
It returns a port identifier.

• port_delete(port_id);
Deletes the specified port.

39

229

Port primitives
• port_connect(name, size, type, access);

name: stringa di identificazione
size: message size (in bytes)
type: STREAM, MAILBOX, STICK
access: READ, WRITE
It returns a port identifier.

• port_disconnect(port_id);
Deletes the specified port.

230

Port primitives
• port_send (port_id, msg_ptr, sync)

sends the message pointed by msg_ptr
to the port identified by port_id.
sync = BLOCK blocks on a full buffer
sync = NON_BLOCK returns 0

• port_receive(port_id, msg_ptr, sync)
receives a message from port_id and copies it
into the buffer pointed by msg_ptr.
sync = BLOCK blocks on an empty buffer
sync = NON_BLOCK returns 0

231

TASK writer(void)
{
PORT p;
char mes[6];

p = port_create(“door”, 6, 8, STREAM, WRITE);

while (condition) {

build_message(mes);
port_send(p, mes, BLOCK);
task_endcycle();

}

port_delete(p);
}

A task creates a port to send messages of 6 bytes.
The port can keep up to 8 messages.

232

TASK reader(void)
{
PORT q;
char data[2];

q = port_connect(“door”, 2, STREAM, READ);

while (condition) {

if (port_receive(q, data, NON_BLOCK))
action1();

else action2();

task_endcycle();
}

port_disconnect(q);
}

A task connects to an already opened port to receive
messages of 2 bytes.

233

Periodic task communication

• If T1 < T2, τ1 puts more messages than τ2 can
read.

• When the buffer is full, τ1 must proceed with
the same rate of τ2.

T1 T2

τ1 τ2

N

234

Exchanged messages

f1

f2

t

of exchanged messages = t · fi

40

235

Buffer Saturation
If T1 < T2, the buffer
saturates when: N

T
t

T
t

>







−









21

Hence, the tasks proceed at their proprer rate
while:

N
T
t

T
t

T
t

T
t

<+−<







−








1

2121

12

21)1(
TT

TTNt
−

−<That is, while:

236

STICK Ports
• If T1 < T2, τ1 overwrites previous messages.

Example:

τ1 τ2
STICK
PORT

abcdefg aceg

T2 = 2T1T1

237

STICK Ports
• If T1 > T2, τ2 reads the same message more

than once (messages are not consumed).

Example:

τ1 τ2
STICK
PORT

abcde aabbccddee

T2T1 = 2T2

238

Blocking on STICK ports

• STICK ports use a semaphore to avoid
simultaneous accesses to the internal buffer.

• Long messages may cause long blocking
delays on the semaphore.

• A more efficient solution avoids blocking
through a buffer replication mechanism.

239

Cyclic Asynchronous Buffer

• It is a mechanism for exchanging messages
among periodic tasks with different rates.

• It avoids memory conflicts by replicating the
internal buffers.

• State message semantics: messages are
overridden by senders and are not consumed
by receivers.

240

Simultaneous accesses
If a writer task τW arrives while a task τR is
reading, the new message is written in a new
buffer:

τR

msg1

CAB

τW

msg2

41

241

Reading from a CAB
Once written, a message becomes available
to the next reader:

writer

τR1

τR2

write M1 write

read M1

read M1

M2

read M2

242

Accessing a CAB
• CABs are accessed through a memory

pointer.

• Hence, a reader is not forced to copy the
message in its memory space.

• More tasks can simultaneously read the
same message.

• At each instant, a pointer (mrd) points to the
most recent message stored in the CAB.

243

CAB

τR1

τR2

τW

M2

M2

τR1

M1

M1
τR2

mrd

M3 M4

M4

244

If a CAB is used by N tasks, to avoid blocking,
it must have at least N +1 buffers.

Dimensioning a CAB

• The (N+1)-th buffer is needed for keeping the
most recent message in the case all the other
buffers are used.

245

Inconsistency with N buffers

• Assume all buffers are used and τW overwrites
the most recent message (M4) with M5.

• If (while τW is writing) τ1 finishes and requests a
new message, it finds the CAB inconsistent.

τ1

mrd

τ2 τ3 τW

M1 M2 M3 M4

M5

246

Writing in a CAB

. . .
p = cab_reserve(cab_id);
<copy message in *p>
cab_putmes(cab_id, p);

. . .

42

247

Reading from a CAB

. . .
p = cab_getmes(cab_id);
<process message with *p>
cab_unget(cab_id, p);

. . .

248

CAB Primitives
• cab_create(cab_name, buf_size, max_buf);

creates a CAB with max_buf buffers
with size buf_size bytes.
It returns a global CAB identifier.

• cab_delete(cab_id);
deletes the specified CAB.

249

CAB Primitives
• cab_reserve(cab_id)

returns a pointer to write in a free buffer

• cab_putmes(cab_id, pointer)
releases the pointer after a write operation

• cab_getmes(cab_id)
returns a pointer to the most recent message

• cab_unget(cab_id, pointer)
releases the pointer after a read operation

250

Position control
x

0 xd

M

Motor
driver

xd

vd v x

y
−

−

Kp

Kv

+

+

+

251

PD regulator
TASK pos_control()
{
int xd, vd, x, v;
float y, Kp, Kv;

while (1) {
get_gains(&Kp, &Kv);
get_setpoint(&xd, &vd);
read_sensors(&x, &v);
y = Kp*(xd - x) - Kv*(vd - v);
output(y);
task_endcycle();

}
}

252

Two-level control loop
force

sensor

Kf

F

Fd

−+

Motor
driver

vd

v

y

−
Kv

+

43

253

Using CABs

Force sensor motor

vd

CABτf

τv

y

v

F

Fd
vd

254

Using visual feedback

• An ultrasound sensor is used for speed control
• The camera is used for stear control

us

camera

255

Three-level control

camera US car model H(z)

vd αd

dI
motor
control

distance
control

visual
control

v α

vd

αd
CAB1

CAB2

τv

τd

τm

Tv = 100 ms

Td = 20 ms

Td = 5 ms

Overload management

257

Examples of load

1

0.75

0.5

0.25

0

1

0.75

0.5

0.25

0
time time

System designed under
worst-case assumptions

load load

System designed under
average-case assumptions

258

Transient overload: ρavg < 1, ρmax > 1

⇒ Arrival of aperiodic activities
⇒ Exceptions raised by the kernel
⇒ Malfunctioning of input devices
⇒ Task with variable execution
⇒ Sporadic overruns

Transient vs. permanent
overload conditions

Possible causes

44

259

Types of overruns
• A task is said to be in overrun if the time demanded for

execution exceeds the expected value according to
which the task has been guaranteed.

• There are two types of overrun:

Execution overrun

Activation overrun

A job executes more
than expected

A job arrives before the
time it is expected 260

Permanent overload: ρavg > 1

⇒ Activation of a new periodic task
⇒ Increase in the task frequencies
⇒ Increase in the task quality (execution times)
⇒ Changes in the environment
⇒ Bad system design

Transient vs. permanent
overload conditions

Possible causes

261

Overload management methods
• Activation overruns of aperiodic tasks

⇒ Value-based scheduling
− tasks are assigned values and executed accordingly

⇒ Admission control
− least importance tasks are rejected
− important tasks receive full service

• Activation/Execution overruns
⇒ Resource Reservation

− Tasks cannot use more than reserved

• Permanent overload of periodic tasks
⇒ Performance degradation

− all tasks are executed
− but with reduced requirements

262

Value-based scheduling
• If ρ > 1, no all tasks can finish within their

deadline.

• To avoid domino effects, the load is reduced
by rejecting the least important tasks.

• To do that, the system must be able to handle
tasks with both timing constraints and
importance values.

263

How to assign values
A task τi can be assigned a value vi according
to different criteria. Those most common are:

vi = Vi arbitrary constant

vi = Ci computation time

vi = Vi/Ci value density

264

Value as a function of time
In a real-time system, the value of a task
depends on its completion time and criticality:

vi (fi)

fi

non real-time

vi (fi)

fi

soft

vi (fi)

fi

firm

di

diri

ri ri

vi (fi)

fi

hard

diri −∞

45

265

Performance evaluation
• The performance of a scheduling algorithm A

on a task set Τ can be evalutated through its
Cumulative Value:

)()(
1

∑
=

=Γ
n

i
iiA fvT

• Note that: ∑
=

=Γ<Γ
n

i
iA V

1
max)()(TT

266

Optimality under overloads

)(max)(* TT AA
Γ=Γ

The performance of an algorithm can be
evalutated with respect to Γ*.

In overload conditions, there are no optimal
on-line algorithms able to guarantee a
cumulative value equal to Γ*.

267

Proof (assume: Vi = Ci)

To maximize ΓA we should know the future.

0 2 6 84 10 12 14 16

10

6

6

τ1

τ2

τ3

ΓA = 10

If at time t = 0 r3 is not know, we cannot select the
task that maximizes the cumulative value.

268

0 2 6 84 10 12 14 16

10

6

6

τ1

τ2

τ3

ΓA = 12

0 2 6 84 10 12 14 16

10

6

6

τ1

τ2

τ3

ΓA = 16

269

Best-effort scheduling

CPUREADY queuetasks

• Tasks are always accepted in the system.

• Performance is controlled through a
suitable (value-based) priority assignment.

• Problem: domino effect.
270

Admission control

CPUtask READY queuetest

rejected N

Y

• Every task is subject to an acceptance test which
keeps the load ≤ 1.

• It prevents domino effects, but does not take
values into account.

• Low efficiency due to the worst-case guarantee
(tasks may be unnecessarily rejected).

46

271

Robust scheduling

• Task scheduling and task rejection are controlled by
two separate policies.

• Tasks are scheduled by deadline, rejected by value.

• In case of early completions, rejected tasks can be
recovered by a reclaiming mechanism.

CPU
task

READY queue
rejection
policy

reject queue

planning

scheduling
policy

recovery
policy

272

Robust EDF
• Scheduling Policy ⇒ EDF

• Rejection policy
when an overload is detected, reject the least
value task which can bring the load below 1.

• Recovery policy
− keep rejected tasks by decreasing values;
− when there is enough spare time, re-accept the

highest value task which is still feasible.

273

Example: task rejection

0 2 4 6 8 10 12 14

τ1

τ2

τ5

τ3

τ4

16 18

Vi

7

10

5

2

3

at time t = 4 ⇒ τ3 rejected

20

274

Example: task rejection

0 2 4 6 8 10 12 14

τ1

τ2

τ5

τ3

τ4

16 18

Vi

7

10

5

2

3

at time t = 4 ⇒ τ3 rejected

20

275

Example: task recovery

0 2 4 6 8 10 12 14

τ1

τ2

τ5

τ3

τ4

16 18

at time t = 8 ⇒ τ3 can be recovered

20

−1

−2

Vi

7

10

5

2

3

Resource Reservation
Handling sporadic overruns

47

277

Problems with overruns
• Without a budget management, there is no

protection against execution overruns.

• If a job executes more than expected, hard
tasks could miss their deadlines.

τ1

Us = 1/4
1

4 8

0 4 8 1262 10

C1 = 1

overrun

deadline miss

278

Solution: Temporal Isolation
• The execution of a task should not affect the

guarantee performed on the other tasks.

• Each task τi receives a fraction Ui of the
processor (its bandwidth) and behaves as it
were executing alone on a slower processor of
speed Ui.

bandwidth reservation

bandwidth enforcement
Temporal isolation

279

Bandwidth reservation
• Ideally, each task should be assigned a given

bandwidth and never demand more.

10 %

45 %
25 %

20 %

τ1

τ2τ3

τ4

• However, tasks are subject to overruns or the
reserved bandwidth can be insufficient for the task.

280

Bandwidth enforcement

• It is a mechanism needed for degrading the QoS when
a task demands more than the reserved bandwidth.

• If a task executes more than expected, its priority
should be decreased (i.e., its deadline postponed).

• When a task experiences an overrun, only that task is
delayed, so that the guarantee performed on the other
tasks is preserved.

281

Implementation

CPU

server
Ready queue

EDF

τ1

τ2

τ3

Us1

Us2

Us3

Us1 + Us2 + Us3 ≤ 1

server

server

Handling permanent
overload

48

283

Performance Degradation
The load can be decreased not only by rejecting
tasks, but also by reducing their performance
requirements.

This can be done by:

• reducing precision of results

• skipping some jobs;

• relaxing timing constraints.

284

Reducing precision
In many applications, computation can be
performed at different level of precision: the
higher the precision, the longer the
computation. Examples are:

• binary search algorithms

• image processing and computer graphics

• neural learning

285

Imprecise computation
In this model, each task τi (Ci, Di, wi) is divided
in two portions:

• a mandatory part: τm
i (Mi, Di)

• an optional part: τo
i (Oi, Di)

Mi Oi

wi is an importance weight
286

Imprecise computation
In this model, a schedule is said to be:

• feasible, if all mandatory parts complete in Di

• precise, if also the optional parts are completed.

Mi Oi

σi

error: εi = Oi − σi average error: ∑
=

ε=ε
n

i
iia w

1

GOAL: minimize the average error

287

Job skipping
Periodic load can also be reduced by skipping
some jobs, once in a while.

Many systems tolerate skips, if they do not
occur too often:

• multimedia systems (video reproduction)

• inertial systems (robots)

• monitoring systems (sporadic data loss)

288

Example

117.1
6
4

2
1

>=+=pU

The system is overloaded, but tasks can be
schedulable if t1 skips one instance every 3:

τ1
skip skip skip

τ2

49

289

FIRM task model
• Every job can either be executed within its

deadline, or completely rejected (skipped).

• A percentage of task instances must be
guaranteed off line to finish in time.

• Each task τi is described by (Ci, Ti, Di, Si):
Si is the minimum number of jobs that must be
executed between two consecutive skips.

290

• Every instance can be red or blue:
– red instances must finish within their deadline
– blue instances can be aborted

• If a blue instance is aborted, the next Si-1
instances must be red.

• If a blue instance is completed within its
deadline, the next instance is still blue.

• The first Si-1 instances of every task must be
red.

291

Example

τi

Ci = 1 Ti = 2 Di = 2 Si = 3

skip skip skip skip

τi
skip skip skip

292

Equivalent utilizazion factor

L

Lg
U

n

i
i

Lp

∑
=

≥
= 1

0

*
),0(

max

i
iii

i C
ST
L

T
LLg 








−=),0(

293

Schedulability Analysis

Theorem: A set of firm periodic tasks is
schedulable if

1* ≤pU

A sufficient condition

294

A necessary condition

Theorem: A set of firm periodic tasks is not
schedulable if

1)1(
1

>
−∑

=

n

i ii

ii

ST
SC

NOTE: the sum represents the utilization of the
computation that must take place.

50

295

Bandwidth saving
• In general, skipping jobs of periodic tasks

causes a bandwidth saving:

• Such a bandwidth can be used for
– improving aperiodic responsiveness (by

increasing their reserved bandwidth);

– accepting a larger number of periodic tasks.

*
pp UUU −=∆

296

In this case: Up
* = 1

In fact, for L = Ti we have gi (0,L) = Ci = Ti

Not always skips save bandwidth:

Hence: 1),0(
==

i

ii

T
T

L
Lg

0

Ci = Ti

Ti

τi
skip skip

297

0

C1 = T1

T1

τ1

In this case we still have: Up
* = 1

In fact: g(0, T1) = T1 e g(0, T2) = T2

However, notice that:

Hence: 1),0(),0(

2

2

1

1 ==
T

Tg
T

Tg

0

C2 = T1

T2

τ2

298

Relaxing timing constraints

• The idea is to reduce the load by increasing
deadlines and/or periods.

• Each task must specify a range of values in
which its period must be included.

• Periods are increased during overloads, and
reduced when the overload is over.

299

τ4

time

of jobs

τ1

τ2

τ3
τ4 arrives
at time t*

t*

Overload handling due to a new arrival

300

Overload handling due to an increased rate

time

of jobs
τ1

τ2

τ3τ1 increases
its rate at t*

t*

51

301

Example

96.0
70
15

40
10

20
10

=++=pU

task Ci Ti0 Tmin Tmax

τ1

τ2

τ3

10
10
15

20
40
70

20
40
35

25
50
80

302

Load adaptation

13.1
30
5

70
15

40
10

20
10

=+++=pU

99.0
30
5

80
15

50
10

23
10

=+++=pU

If τ4 arrives with: C4 = 5, T4 = 30 the system is not
schedulable any more:

However, there exists a feasible schedule within the
specified ranges:

303

Elastic task model

• Tasks’ utilizations are treated as elastic
springs and can be changed by period
variations.

• The resistance of a task to a period variation
is controlled by an elastic coefficient Ei:

⇒ the greater Ei the greater the elasticity

304

Elastic task model
• A periodic task τi is characterized by:

(Ci, Ti0, Ti-min, Ti-max, Ei)

• The actual period Ti ∈ [Ti-min, Ti-max]

Ei

ri Ti0 t
τi

Ti-maxTi-min

305

Special cases

• A task with Tmin = Tmax, is equivalent to a hard
task.

• A task with Ei = 0 can intentionally change its
period but does not allows the system to do
that.

306

Compression algorithm

τ1 τ2 τ3 τ4

1 Up

1 Up

τ1 τ2 τ3 τ4

During overloads, utilizations must be
compressed to bring the load below one.

52

307

The linear spring analogy

x

x1o x2o x3o

L00

x

x1 x2 x3

F

0 Ld

F = k1(x1o - x1)

F = k2(x2o - x2)

F = k3(x3o - x3)

x1 + x2 + x3 = Ld

x1o + x2o + x3o = L0

308

Solution without constraints

)()()111(321321
321

xxxxxx
kkk

F ooo ++−++=++

Summing the equations, we have:

)(0 dLL −=

That is:

321

0

111
)(

kkk

LLF d

++

−
=

309

Substituting F in the equations, we have:

That is: 321

0
111 111

)()(

kkk

LLxxkF d
o

++

−
=−=

321

1
011 111

1
)(

kkk

kLLxx do

++
−−=

Solution without constraints

310

∑ =

=
n

i
ik

K

1

// 1
1

i
dioi k

KLLxx //
0)(−−=

And defining: Ei = 1/ki

∑
=

=
n

i
is EE

1s

i
dioi E

ELLxx)(0 −−=

Solution without constraints

311

Period computation

s

i
dioi E

EUUUU)(0 −−=

i

i
i U

CT =And then:

312

Solution with constraints

xL00

x

F

0 Ld

x

F

0 Ld

Iterative solution:

53

313

Other use of elastic tasks

• Quickly find new period configurations during
negotiation.

• Dynamically adjust the rates to fully utilize the
processor.

314

Problem Understanding

• Real-Time applications are usually
guaranteed based on worst-case execution
times (WCETs).

• However, a precise WCET estimation is very
difficult to achieve (due to interrupts, prefetch,
cache, and DMA mechanisms).

• A wrong WCET estimate may cause the
following problems:

315

Over-estimation of WCETs

• high predictability
• low efficiency

Under-estimation of WCETs

• high efficiency
• low predictability

Predictability vs. efficiency
1

0.75

0.5

0.25

0 time

load

1

0.75

0.5

0.25

0 time

load

316

Adaptive solution
• The user does not specify any WCET.

• The system:
• monitors tasks’ execution times to estimate the

actual load (Ue);

• adapts the task rates to keep the processor
utilization close to a desired value (Ud).

Task importance must be taken into account
while performing rate adaptation.

317

Execution Time Estimator
• Monitored parameters (for each task ti):

Qi = ci + k (Ci − ci)

• Building a prediction:

ci current average execution time

Ci current worst-case execution time

k = balancing factor
318

Load as a feedback

Real-Time
System

Rate
Adaptation
Algorithm

Load
estimator

Execution
time

Estimator

Ud

Ue

Ti

ci Ci

Qi

